
qCO 
(~j+ l)(Ic i - i c ,  ) 

The method given above can be used to design installations for drying with a gas sus- 
pension containing hygroscopic particles and to determine the heat, air, and dispersed ma- 
terial consumed in drying. 

NOTATION 

c, specific mass heat capacity, kJ/(kg.~ G, mass flow rate, kg/sec; I, enthalpy per 
unit mass, Kj/kg; Q, heat, kW; t, temperature, ~ w, moisture content per dry mass, frac- 
tion; x, moisture content per unit mass of dry air, kg/kg; ~, specific mass flow-rate con- 
centration of particles, kg/kg of dry air; ~, relative humidity, fraction; r, heat of 
vaporization of water, kJ/kg. Indices: w, water; v, vapor; a, air; p, particles; ap, air 
substituting for particles; gs, gas supension; e, equilibrium; b, bound; -, average; without 
primes, at entrance to air chamber; ''', at exit from air chamber; ', at entrance to drying 
chamber; '', at exit from drying chamber; 1-4, intermediate parameters. 

1. 

2. 

3. 

4. 
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KINETICS OF ISOTHERMAL EVAPORATION OF A POROUS OR DISPERSED BODY 

B. V. Deryagin, V. M. Starov, 
and D. V. Fedoseev 

UDC 536.42 

We consider the evaporation of a porous body which consists initially of spheres 
of identical radii. We find the dependence of the velocity of motion of the 
boundary of the body on the external parameters. 

DERIVATION OF EQUATIONS OF MOTION FOR THE BOUNDARY 

To simplify the calculations, we confine ourselves in the present work to a model of 
the porous body which consists of spheres of identical radii ro which are positioned at ran- 
dom but uniformly to the right of a plane. The evaporation takes place on account of a 
difference between the pressure of vapor in equilibrium with the spheres Po, and the pres- 
sure p: of the vapor confined on the left of the planar boundary of the body. Below, we 
neglect the dependence of the equilibrium pressure on the radius of the spheres. After the 
beginning of evaporation, the radii of spheres are no longer equal. The radii of the 
spheres which are nearer to the periphery of the body (Fig. I) decrease more rapidly, and a 
gradient of radii appears (but not the gradient of concentrations of the spheres) which is 
directed and decays toward the interior of the porous body. The spheres at the external 
surface of the body evaporate first. 

We consider a steady-state evaporation process during which the external boundary of 
a dispersed body which corresponds to radii of spheres r = 0 moves to the right with a 
constant, but yet unknown, velocity c. The problem consists of determination of c as a func- 
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Fig. i. Model of evapo- 
rating porous body used 
in this work. 

tion of the parameters Po, Pl, ro, and n (their number per unit volume of the dispersed 
body). The resistance of the spheres to vapor transport is neglected. 

We introduce a moving coordinate system whose origin x = 0 coincides with the external 
boundary of the body which moves to the right with a constant velocity c. It is clear that 
the mass of the substance (including the mass of the spheres and the vapor between them) 
in the volume between two planes with arbitrary coordinates xl and xa, remains constant. 
Hence it follows that the current of matter per unit area through any such plane is iden- 
tical and equal to the intensity of evaporation: 

where V 

p~ 
9~= P RT' 

] = c n % V  § cp~ (I -- nV) + D - -  : dpo - const, (i) 
dx 

4 
~r 3 is the volume of a sphere. 

3 

Eq. (i) will be written as 

Using the equation of state of an ideal gas 

cp~t ( 4 ) DF dp 
] = cnp, + a r a +  ~ T -  1 -- n a r  a + -- - const. 

3 RT dx (2 )  

The boundary conditions for Eq. (2) are 

P---~Po, x---~oo; P=Pl, x=O (2') 

In (i) and (2), the diffusion coefficient of the vapor is determined as follows. We 
assume that the following relation holds: 

4 l 
, (3) 

S ntzr 2 

Then, the Knudsen molecular regime of gas flow is realized in the pores for which we have, 
according to [1], 

r (1 - -  nV) 2 
m ~ o $  

s s (4) 

If also the reflection is diffusive with total accomodation, we have 

,2 (5) 
a = 1-3-\  n~  / " 

Near the boundary of the disperse body (x§ condition (3) is violated because r is 
small. However, the following condition begins to hold: 

l ~ r ,  (6) 

which corresponds to pseudomolecular gas flow discovered earlier in [2]. In this case, 
however, the "diffusion" coefficient is increased insignificantly by 10% from the value (4) 
which will be neglected. 

From the condition of steady-state evaporation follows the equation 
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dV OV OV 
d-~- : 0-~ @ c 'bx : :  O, (7) 

where dV/dt is the derivative in the moving coordinate system, and 3V/3x in the stationary 
system. When condition (6) holds, and condition (3) holds with a lesser but sufficient 
accuracy, the rate of evaporation 3V/3t is equal to 

av 
= ~So (Vo -- P) ---- [ 34ztrz ( P o .  P), (8) 

Ot 

where the quantity $ is defined as [2]: 

t 3= (  ~ ) ' /~ 1 (9) 
�9 2nRT P~ 

It follows from relations (7) and (8) that 

o r  

OV l f34zr2(po_p) ' (10) 
dx c 

c 3V c dr (ii) 
P = Po - P0 , ~54~r z Ox [5 d x  

Henc e, 

dp c d2r 

dx f~ dx ~ 

We s u b s t i t u t e  t he  o b t a i n e d  r e l a t i o n s  in  the  o r i g i n a l  e q u a t i o n  (2 ) :  

4 'l 2 a,a ( 1 --n --nr 3 

4 c~----q-P ( 1 R T  ' - - n  43 ~rs)' ~- ' RT4~n,  ~ 3  ) dxdP c n p ~ -  ~r 3 + , == const, (12) 
\ 

which g i v e s  
~ c ( l  4 )2 $11Zr 3 

4 a , ct,, , c d r ) (  4 ) ~ dzr cons~;. cnp~ ~ ~tr [ p. 1 ~nr; 
T - ~  ~ dr , 3 [SRT4~nr z dx z (13) 

When going away from the  boundary  of the  d i s p e r s e d  body toward  the  i n t e r i o r ,  i . e .  f o r  x-~o, 

we have dp--+o,  r--+ro, and we t h e r e f o r e  o b t a i n  from (12) 
dx 

const = cp~ nnr03 + - ~ -  1 ~mr~ , 
3 (14) 

This determines the constant in (12) and (13). 
(13) which gives, after simple transformations, 

We substitute the obtained constant in Eq. 

1-9-6 o~n~r~  (r 3 - ~) 

trot d2r -4: c]x 4;tnr ~ dr _ 3 (15) 

~RT dx 2 ~RT ( 1 - - . 4  r m r a l 3  , dx (1 34 ~nr~) 2 

When integrating Eq. (15), one must satisfy the following boundary conditions which 
follow from conditions (2') : 

r = O  for x=O, (16) 
r - - ~ - r 6  for x--~oo, (17) 

C dr = Po- -P l  for x O. (18) 
dx 
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SOLUTION OF THE FUNDAMENTAL EQUATION 

We now obtain the solution of Eq. (15) with boundary conditions (16)-(18). The aim is 
to determine the unknown velocity of motion of the boundary c. For convenience we introduce 

in (15)-(18) the dimensionless quantities 

4 
.q = x / x o ,  z = C/Co, ~ = r / ro ,  • - -  ~ n r ~ ,  (19) 

3 

1 / 3F~ 
y,o : ] /  " 

F [Jps~RT (20) 
co = 3,tt ' 

(Po -- P~) t~ ( 2 3. ) 
x p ~ R T  

The quantity ~ is a function of the coordinate y, and 0 ~ ~ ~ i. With the dimensionless 
quantities (19)-(21), the problem (15)-(18) can be rewritten as 

~n z$2~, ~2 (1 - -  $3) (22) 
1 - -  ~ 3  (1  - -  •  

~(0) = 0, (23) 

,~(g)-~ 1, g -+  oo, (24) 

~' ( 0 )  - -  Y (25) 
z 

Hence it follows that the dimensionless velocity z is a function of only two parameters • 
and y, and in the case z<<l , the system (22)-(25) can be written as 

~" + z ~ '  = - - ~ ( 1  --~3), 

(0) -. o, 

where T = $3 
tion: 

~(~)-+1, v - + ~ ,  ~ ' ( o ) -  v 
z 

Hence it follows that in this case, z is a function of only one parameter y. Since (22) 
does not contain explicitly the independent variable y, one can make the substitution ~' = 
f($3) and, after some transformations, this yields an equation of the form 

3f df zf 1 - 
-~-~ + I - - • 1 6 2  (1- - •162  z , (26) 

Putting in (26) u = f2 or f = ~u, we obtain the following first-order equa- 

3 z V u  1 --r 
2 . u ' +  1 - - •  (l__• 0 ~ - ~ 1 ,  (27) 

with the boundary conditions 

u (0 )  - ~2 , 
z 2 

u d ) = o .  

The boundary condition (29) follows from the fact that ~'(y)+0 for y-~o. 

A numerical solution of the problem (27)-(29) can easily be obtained on a computer. 
It can, however, be also solved analytically in the case of small and large values of z. 

The Case z << i. In this case, instead of Eq. (27) we have 

(28) 

(29) 

3 I--T 
- - .  U r = 

2 (1 - -  ~,~)2 

(3o) 

903 



which allows simple integration: 

u ('~) - -  2 I -- I: d ~  + - - .  

3 (1 - -  • z Z z (31) 
0 

In obtaining (31) we used the boundary condition (28). Carrying out the integration in (31) 
we have 

u ( x ) =  2 1 - - x  ~_+_ 2 l n ( 1 - - ~ ' ~ ) ~ -  z z 
3 • 1 - -  zx: 3~ ~ - - -  ( 3 2 )  

From expression (32) and the boundary conditions (29) we find an equation for the de- 
pendence of z on y and ~: 

Hence, 

~2 (33) 
_ _ e _ +  2 I n ( i - - x ) +  - - 0 .  

3• 3x  2 z z 

z~ 

/ /  I In I I 
• l--x 

In the case x(< 1 , expression (33) yields, by expanding the logarithm up to the second term, 

z ~ ]/-3-y, (34) 

or, in the dimensional form, by substituting expressions (20) and (21), 

Po--Pl ~ .~z[31~ 
c ~ 4. ~nr3o _ _  psR-----f-" 

3 
The condition of applicability of the obtained expressions is 

~<<I. 

By definition of the quantity y (21), we hence find 

(34') 

(35) 

Po (1 - -  pllpo) ~ 1 1 --<<i 
" R T  p~ x 

But Po~ 0 is the equilibrium pressure of vapor above the particles. 
-- Pv RT 

i, the last inequality will clearly be satisfied if 

pC i 
--<<i 

Ps 

or 

(36) 

Since also polpl > 

(37) 

~ Since u s u a l l y  nv ~s ~ lO -~ - lO-~ ,  and z ~ l - - l O - 2 ,  c o n d i t i o n  (37) i s  i n  most cases s a t i s f i e d  
to a high degree of accuracy. 

We estimate in this case the thickness of the particle layer ~ where the particle 
radius differs from the equilibrium radius ro. We denote the dimensionless thickness by 
A = 6/xo. We make this estimate in the case • Then, by noting that z = 3~y, we obtain 
from expression (32) 

u (~)  ~ (~  - -  1)2 

3 

~ I --~ (38) 

V3 

Since u = fa = ($,)a, 
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For y-~o, the last equation can be written in the form 

~ ~ - V~(1 - ~), 
whose solution is 

= 1 _ Ae- v7< (39) 

where the constant A can be obtained by joining the expressions for ~(y) for small and large 
values of the argument y. From (39) we obtain 

I 
A ~ -- (40) 

V V  

or, in the dimensional form, 

The Case z >> I. 
obtain 

1 ~ p~ 
6 ~, 4zmr----~ p~fJRT (40') 

By making the transformation of variables g,== z~, in Eq. (27), we 

3 du 1 / 7  1 z 

1 l-----rp 
Z Z 

The term on the right-hand side is small because of the assumption z >> !. 
possible to write Eq. (41) in the form 

3 du V u 
2 d~p ~ • = O, O < ~ < ~ z ,  

1 
2 

(41) 

This makes it 

(42) 

y2 
u ( o )  - 

Z 2 

u ( z )  = 1 .  

In t eg ra t ing  (42) and using the boundary condi t ion  (43), we f ind 

u(qg) [ > In ( 1 - - - -  - - - -  ~ + • ) % ] 2 z  , 

Substituting ~----z, in Eq. (45), we obtain from the boundary condition (44): 

(43) 

(44) 

(45) 

--J--z In (1 -- • + .  Y 
3• z 

which gives the following expression for z: 

(37), 

=0,  

/ -  3 ?z / 

In 1 ------T 

(46) 

The condition of applicability of the last expressions is y >> i or, as follows from 

- - I  ~ • (47) 
P~ , Po 

It follows from expression (47) that this approximation is applicable only for very small 
• -4, i.e., for a very dilute cloud of particles. 

As in the previous case, we estimate the quantity A by putting z~l. We find from 
(45), by keeping only the first term in the expansion of the logarithm, 

u = - ?  (1--~)2. 
3 

Here we noted that z = 3~y. Since ~ = 53 , u = (~,)a, we have 
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As before, for y->~ we obtain from the last equation 

z - (I - 

whose solution has the form 

(48) 

~ 1 - - B e -  v-~v,  (49) 

where the meaning of the constant B is analogous to that of the constant A in Eq. (39). 
From expression (49) we obtain 

l 
A (50) 

or, in the dimensional form, 

6 ~ 12 ~nnro (Po - -  P~) (50 ~ ) 

By comparing expressions (40) and (50) we obtain that for small velocities of motion, the 
width of the front is considerably larger than at high velocities since in the latter case 
y >>i. 

Thus, the dependence z(y) for • has the form shown in Fig. 2. 

The presented theory can be used in the calculation of evaporation of many dispersed 
and porous media such as porous ablating coverings and the evaporation of clouds and 
domets. In some cases, the mass evaporation flow from a unit surface of a porous body ex- 
ceeds the mass flow from a unit continuous surface. If the heat flux incident on the surface 
of the porous body is constant, the protective properties of the porous body will be higher 
than of a continuous body. 

For the convenience of practical applications we shall go over from the dimensionless 
quantities to dimensional ones. 

It follows from formula (14) that 

] : c [p, (1 - -  e) +poe] ,  (51)  

4 
where e :  1 - - - -  ~nr~ is the porosity. 

3 

If the velocity c has been found, expression (51) makes it possible to determine the 
current j. For example, for y << I, we find from (51) and (34), 

/ : [ p ~ ( 1 - - e ) + p , s ]  Po--P~ . I F  
pa[~ 

1 - -  s V p~RT 

or, after the substitution uB = 24/(13 ~0s), 

We denote 

P o - -  Pl . V r 24 p (52) 

f 
Jo : (po - pO Y 2~RT ' 

(53) 

Then 

J / /o :  1 +  1 - - e  p~ , 13 

Because of the assumption (37) pv/Ps(l--e) ~ i, e < i we obtain from (53) 

J/io = l /  4 8  

13  " V 
(54) 
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Fig. 2. Dependence of the 
dimensionless velocity of 
motion of the evaporation 
front z on the dimensionless 
parameter y which charac- 
terizes the state of the 
system, i) Approximate 
soln. z = 3/~y; 2) approxi- 
mate soln. z = 3~y; 3) 
exact solution. 

In the other limiting case y ~ I, we obtain from (51) and (47) 

f= [p~(1--e) +t~oeI ~ / p o - - p , / V  24 
h~ 

1 - - e  13~p~  

Hence we find, using (52), 

p~ -[- r to~ (1 -- a) ." 1 /1  - -  P,/Po 

Because of the assumption y >> i: Ps(l--~)/pv << i, i.e., 

i / /o = - - T ~ -  ~ 05 ( l  - -  ~ )  V I - pl/po 

In  the l a s t  exp ress ion ,  because of  the assumptions pv/Ps(l--~_) >> i ,  so tha t  the q u a n t i t y  
1 -- c i s  ve ry  smal l ,  i . e . ,  t h e p o r o s i t y  i s  very  c lose to u n i t y .  

(55) 

NOTATION 

Ps and Pv, densities of the material of the spheres and vapor; Pv = Pv(P); ~, molar 
weight; R, gas constant; T, temperature in degrees K; D, diffusion coefficient of the vapor; 
X, mean free path of the vapor molecules; S = 4~nr 3, specific surface of the porous body; 
l, mean free path of the vapor molecules between two collisions with the spheres; c, 
porosity of the body; and So, surface of one granule. 
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*Generally speaking, in the case of intense evaporation one can use another expression for 
the evaporation rate [3]. 
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